english

論文

2023

  • [521] M. Nakazawa and T. Hirooka, “Theory of Higher-Order Hermite-Gaussian Pulse Generation From an FM Mode-Locked Laser,” IEEE J. Quantum Electron., vol. 59, no. 2, 1600325, Apr. (2023).

2022

  • [520] M. Nakazawa, M. Yoshida, and T. Hirooka, “Experiments on Generation of Various Dark and Bright Pulses From an FM Mode-Locked Laser,” IEEE J. Quantum Electron., vol. 58, no. 6, 1600523, December (2022).
  • [519] M. Nakazawa, K. Kasai, M. Yoshida, and T. Hirooka, “Optical andWireless Linked Fully Coherent Access System toward Next Generation RAN,” IEICE Trans. Electron. (in Japanese), invited paper, vol. J105-C, no. 11, pp. 315-328, Nov. (2022).
  • [518] M. Nakazawa and T. Hirooka, “Theory of Generation of Various Dark and Negative Pulses From an FM Mode-Locked Laser,” IEEE J. Quantum Electron., vol. 58, no. 5, 1300524, Oct. (2022).
  • [517] K. Kimura, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, “Experimental and Numerical Analysis of Ultrahigh-Speed Coherent Nyquist Pulse Transmission with Low-Nonlinearity Dispersion Compensator,” IEICE Trans. Comm., vol. E105-B, no. 9, pp. 1014-1022, Sep. (2022).
  • [516] M. Naghshvarianjahromi, S. Kumar, M. J. Deen, T. Iwaya, K. Kimura, M. Yoshida, T. Hirooka, and M. Nakazawa, “Software-Defined Fiber Optic Communications for Ultrahigh-Speed Optical Pulse Transmission Systems,” IEEE J. Sel. Topics Quantum Electron., vol. 28, no. 4, 7500210, July-Aug. 2022.
  • [515] M. Nakazawa, M. Yoshida, and T. Hirooka, “Experiments on an FM Mode-Locked Laser as an Arbitrary Optical Function Generator,” IEEE J. Quantum Electron., vol. 58, no. 3, 1300316, June (2022).
  • [514] M. Nakazawa, M. Yoshida, and T. Hirooka, “Experiments on an AM Mode-Locked Laser as an Arbitrary Optical Function Generator,” IEEE J. Quantum Electron., vol. 58, no. 3, 1300218, June (2022).
  • [513] K. Kasai, T. Kan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Broadband injection-locked homodyne receiver for digital coherent transmission using a low Q Fabry-Perot LD,” Opt. Express, vol. 30, no. 8, pp. 13345-13355, April (2022).
  • [512] M. Nakazawa and T. Hirooka, “Theory of FM Mode-Locking of a Laser as an Arbitrary Optical Function Generator,” IEEE J. Quantum Electron., vol. 58, no. 2, 1300125, April (2022).
  • [511] M. Yoshida, K. Sato, T. Hirooka, K. Kasai, and M. Nakazawa, “Precise Measurements and their Analysis of GAWBS-Induced Depolarization Noise in Multi-Core Fiber for Digital Coherent Transmission,” IEICE Trans. Comm., vol. E105-B, no. 2, pp. 151-158, February (2022).

2021

  • [510] K. Sato, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, “GAWBS noise correlation between cores in multi-core fibers,” Opt. Express, vol. 29, no. 26, pp. 42523-42537, December (2021).
  • [509] M. Nakazawa and T. Hirooka, “Theory of AM Mode-Locking of a Laser as an Arbitrary Optical Function Generator,” IEEE J. Quantum Electron., vol. 57, no. 6, 1300320, December (2021).
  • [508] M. Nakazawa and T. Hirooka, “A Generalized Mode-locking Theory for a Nyquist Laser with an Arbitrary Roll-off Factor PART II: Oscillation Waveforms and Spectral Characteristics,” IEEE J. Quantum Electron., vol. 57, no. 3, 1100215, June (2021).
  • [507] M. Nakazawa and T. Hirooka, “A Generalized Mode-locking Theory for a Nyquist Laser with an Arbitrary Roll-off Factor PART I: Master Equations and Optical Filters in a Nyquist Laser,” IEEE J. Quantum Electron., vol. 57, no. 3, 1100117, June (2021).
  • [506] M. Nakazawa, M. Yoshida, and T. Hirooka, “Recent progress and challenges toward ultrahigh-speed transmission beyond 10 Tbit/s with optical Nyquist pulses,” IEICE Electron. Express (Invited paper), vol. 18, no. 7, 20212001, April (2021).
  • [505] K. Sato, T. Kan, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, “Chromatic dispersion dependence of GAWBS phase noise compensation with pilot tone,” Opt. Express, vol. 29, no. 7, pp. 10676-10687, March (2021).
  • [504] M. Yoshida, T. Hirooka, and M. Nakazawa, “Ultrahigh-speed Nyquist pulse transmission beyond 10 Tbit/s,” IEEE J. Selected Topics in Quantum Electronics (invited paper), vol. 27, no. 2, 7700612, March/April (2021).
  • [503] M. Yoshida, T. Kan, K. Kasai, T. Hirooka, K. Iwatsuki, and M. Nakazawa, “10 channel WDM 80 Gbit/s/ch, 256 QAM bi-directional coherent transmission for a high capacity next-generation mobile fronthaul,” J. Lightwave Technol., vol. 39, no. 5, pp. 1289-1295, March (2021).
  • [502] M. Yoshida, T. Kan, K. Kasai, T. Hirooka, and M. Nakazawa, “10 Tbit/s QAM quantum noise stream cipher coherent transmission over 160 km,” J. Lightwave Technol., vol. 39, no. 4, pp. 1056-1063, February (2021).
  • [501] T. Kan, K. Sato, M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, “Spectrally efficient pilot tone-based compensation of inter-channel cross-phase modulation noise in a WDM coherent transmission using injection locking,” Opt. Express, vol. 29, no. 2, pp. 1454-1469, January (2021).

2020

  • [500] T. Kan, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, “Injection-locked 256 QAM WDM coherent transmissions in C- and L-bands,” Opt. Express, vol. 28, no. 23, pp. 34665-34676, November (2020).
  • [499] M. Yoshida, N. Takefushi, K. Kasai, T. Hirooka, and M. Nakazawa, “Precise measurements and their analysis of GAWBS-induced depolarization noise in various optical fibers for digital coherent transmission,” Opt. Express vol. 28, no. 23, pp. 34422-34433, November (2020).
  • [498] N. Takefushi, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, “GAWBS phase noise characteristics in multi-core fibers for digital coherent transmission,” Opt. Express vol. 28, no. 15, pp. 23012-23022, July (2020).
  • [497] N. Takefushi, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, “Theoretical and experimental analyses of GAWBS phase noise in various optical fibers for digital coherent transmission,” Opt. Express vol. 28, no. 3, pp. 2873-2883, February (2020).

2019

  • [496] R. Hirata, T. Hirooka, M. Yoshida, and M. Nakazawa, “Wavelength-tunable sub-picosecond optical switch over entire C-band using nonlinear optical loop mirror,” IEICE Electron. Express vol. 16, no. 23, 20190664, December (2019).
  • [495] M. Yoshida, N. Takefushi, K. Kasai, T. Hirooka, and M. Nakazawa, "Suppression of large error floor in 1024 QAM digital coherent transmission by compensating for GAWBS phase noise," Opt. Express vol. 27, no. 25, pp. 36691-36698, December (2019).
  • [494] M. Yoshida, K. Kimura, T. Iwaya, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 15.3 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 8.3 bit/s/Hz,” Opt. Express vol. 27, no. 20, pp. 28952-28967, September (2019).

2018

  • [493] T. Hirooka, R. Hirata, J. Wang, M. Yoshida, and M. Nakazawa, “Single-channel 10.2 Tbit/s (2.56 Tbaud) optical Nyquist pulse transmission over 300 km,” Opt. Express, vol. 26, no. 21, pp. 27221-27236, October (2018).
  • [492] K. Kimura, J. Nitta, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, "Single-channel 7.68 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 9.7 bit/s/Hz," Opt. Express vol. 26, no. 13, pp. 17418-17428, June (2018).
  • [491] Y. Wang, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa, "Single-channel 200 Gbit/s, 10 Gsymbol/s-1024 QAM injection-locked coherent transmission over 160 km with a pilot-assisted adaptive equalizer," Opt. Express vol. 26, no. 13, pp. 17015-17024, June (2018).
  • [490] M. Nakazawa, M. Yoshida, M. Terayama, S. Okamoto, K. Kasai, and T. Hirooka, "Observation of guided acoustic-wave Brillouin scattering noise and its compensation in digital coherent optical fiber transmission," Opt. Express vol. 26, no. 7, pp. 9165-9181, April (2018).
  • [489] D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, M. Yoshida, K. Kasai, M. Nakazawa, H. Takahashi, K. Igarashi, I. Morita, and M. Suzuki,, “10.16-peta-b/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C+L band,” J. Lightwave Technol. vol. 36, no. 6, pp. 1362-1368, March (2018).
  • [488] K. Kasai, M. Nakazawa, M. Ishikawa, and H. Ishii, “ 8 kHz linewidth, 50 mW output, full C-band wavelength tunable DFB LD array with self-optical feedback,” Opt. Express vol. 26, no. 5, pp. 5675-5685, March (2018).
  • [487] S. Okamoto, M. Terayama, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, “Experimental and numerical comparison of probabilistically shaped 4096 QAM and a uniformly shaped 1024 QAM in all-Raman amplified 160 km transmission,” Opt. Express vol. 26, no. 3, pp. 3535-3543, February (2018).

2017

  • [486] H. Ishii, N. Fujiwara, K. Watanabe, S. Kanazawa, M. Itoh, H. Takenouchi, Y. Miyamoto, K. Kasai, and M. Nakazawa, “Narrow Linewidth Tunable DFB Laser Array Integrated with Optical Feedback Planar Lightwave Circuit (PLC),” IEEE Sel. Top. Quantum Electron. vol. 23, no. 6, 1501007, November/December (2017).
  • [485] K. Harako, M. Yoshida, T. Hirooka, and M. Nakazawa, "A 40 GHz, 770 fs regeneratively mode-locked erbium fiber laser operating at 1.6 μm," IEICE Electron. Express, vol. 14, no. 18, 20170829, October (2017).
  • [484] T. Kan, K. Kasai, M. Yoshida, and M. Nakazawa, “42.3 Tbit/s, 18 Gbaud 64 QAM WDM coherent transmission over 160 km in the C-band using an injection-locked homodyne receiver with a spectral efficiency of 9 bit/s/Hz,” Opt. Express vol. 25, no. 19, pp. 22726-22737, September (2017).
  • [483] K. Kasai, M. Nakazawa, Y. Tomomatsu, and T. Endo, “1.5 μm, mode-hop-free full C-band wavelength tunable laser diode with a linewidth of 8 kHz and a RIN of -130 dB/Hz and its extension to the L-band,” Opt. Express, vol. 25, no. 18, pp. 22113-22124, September (2017).
  • [482] S. Kumar and M. Nakazawa, “Discrete solitons in optical fiber systems with large pre-dispersion,” Opt. Express, vol. 25, no. 17, pp. 19923-19945, August (2017).
  • [481] M. Yoshida, T. Hirooka, and M. Nakazawa, “Low-loss and reflection-free fused type fan-out device for 7-core fiber based on a bundled structure,” Opt. Express, vol. 25, no. 16, pp. 18817-18826, August (2017).
  • [480] M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, R. Namiki, “QAM Quantum Noise Stream Cipher Transmission over 100 km with Continuous Variable Quantum Key Distribution," IEEE J. Quantum Electron., vol. 53, no. 4, 8000316, August (2017).
  • [479] J. Nitta, M. Yoshida, K. Kimura, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-Channel 3.84 Tbit/s, 64 QAM Coherent Nyquist Pulse Transmission over 150 km with a Spectral Efficiency of 10.6 Bit/s/Hz,” Opt. Express, vol. 25, no. 13, pp. 15199-15207, June (2017).

2016

  • [478] D. Suzuki, K. Harako, T. Hirooka, and M. Nakazawa, “Single-channel 5.12 Tbit/s (1.28 Tbaud) DQPSK transmission over 300 km using non-coherent Nyquist pulses,” Opt. Express, vol. 24, no. 26, pp. 29682-29690, December (2016).
  • [477] M. Yoshida, K. Yoshida, K. Kasai, and M. Nakazawa, “1.55 μm hydrogen cyanide optical frequency-stabilized and 10 GHz repetition-rate-stabilized mode-locked fiber laser,” Opt. Express, vol. 24, no. 21, pp. 24287-24296, October (2016).
  • [476] T. Hirooka, K. Tokuhira, M. Yoshida, and M. Nakazawa, “440 fs, 9.2 GHz regeneratively mode-locked erbium fiber laser with a combination of higher-order solitons and a SESAM saturable absorber,” Opt. Express, vol. 24, no. 21, pp. 24255-24264, October (2016).
  • [475] Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “320 Gbit/s, 20 Gsymbol/s 256 QAM coherent transmission over 160 km by using injection-locked local oscillator,” Opt. Express, vol. 24, no. 19, pp. 22088-22096, September (2016).
  • [474] K. Harako, D. Suzuki, T. Hirooka, and M. Nakazawa, “Roll-off factor dependence of Nyquist pulse transmission,” Opt. Express, vol. 24, no. 19, pp. 21986-21994, September (2016).
  • [473] M. Nakazawa and T. Hirooka, “A Non-Perturbative Mode-Locking Theory of the Nyquist Laser With a Dirichlet Kernel Solution,” IEEE J. Quantum Electron. vol. 52, no. 8, 1300113, August (2016).
  • [472] M. Nakao, M. Yoshida, T. Hirooka, and M. Nakazawa, “A 1.55 μm, 271 fs and 1.07 μm, 294 fs simultaneously mode-locked Er- and Yb-doped fiber laser with a single SWNT/PVA saturable absorber,” IEICE Electron. Express, vol. 13, no. 14, 20160515, July (2016).
  • [471] M. Nakazawa and T. Hirooka, "A mode locking theory of the Nyquist laser," Opt. Express vol. 24, no. 5, pp. 4981-4995, March (2016).
  • [470] K. Kasai and M. Nakazawa, “Ultra-multilevel digital coherent optical transmission employing a narrow linewidth laser, an optical phase-locked loop circuit and injection-locking scheme,” The Review of Laser Engineering (in Japanese), vol. 44, no. 2, pp. 106-110, February (2016).
  • [469] K. Kasai, M. Yoshida, and M. Nakazawa, “295 mW output, frequency-stabilized erbium silica fiber laser with a linewidth of 5 kHz and a RIN of -120 dB/Hz,” Opt. Express vol. 24, no. 3, pp. 2737-2748, February (2016).
  • [468] D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 1.92 Tbit/s, 64 QAM coherent Nyquist orthogonal TDM transmission with a spectral efficiency of 10.6 bit/s/Hz,” J. Lightwave Technol. vol. 34, no. 2, pp. 768-775, January (2016).
  • [467] M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, “Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km,” Opt. Express, vol. 24, no. 1, pp. 652-661, January (2016).

2015

  • [466] T. Yajima, J. Yamamoto, Y. Kinoshita, F. Ishii, T. Hirooka, M. Yoshida, and M. Nakazawa, “OH-free low loss single-mode fiber fabricated by slurry casting / rod-in-tube method,” IEICE Electron. Express, vol. 12, no. 24, 20151005, December (2015).
  • [465] T. Hirooka and M. Nakazawa, “Q-factor analysis of nonlinear impairments in ultrahigh-speed Nyquist pulse transmission,” Opt. Express, vol. 23, no. 26, pp. 33484-33492, December (2015).
  • [464] T. Hirooka, K. Kasai, Y. Wang, M. Nakazawa, M. Shiraiwa, Y. Awaji, and N. Wada, “First demonstration of digital coherent transmission in a deployed ROADM network with a 120 Gbit/s polarization-multiplexed 64 QAM signal,” IEICE Electron. Express, vol. 12, no. 23, 20150884, December (2015).
  • [463] K. Harako, D. Suzuki, T. Hirooka, and M. Nakazawa, “2.56 Tbit/s/ch (640 Gbaud) polarization-multiplexed DQPSK non-coherent Nyquist pulse transmission over 525 km,” Opt. Express, vol. 23, no. 24, pp. 30801-30806, November (2015).
  • [462] K. Kasai, Y. Wang, S. Beppu, M. Yoshida, and M. Nakazawa, “80 Gbit/s, 256 QAM coherent transmission over 150 km with an injection-locked homodyne receiver,” Opt. Express, vol. 23, no. 22, pp. 29174-29183, November (2015).
  • [461] K. Kasai, Y. Wang, D. O. Otuya, M. Yoshida, and M. Nakazawa, “448 Gbit/s, 32 Gbaud 128 QAM coherent transmission over 150 km with a potential spectral efficiency of 10.7 bit/s/Hz,” Opt. Express vol. 23, no. 22, pp. 28423-28429, November (2015).
  • [460] T. Hirooka, D. Seya, K. Harako, D. Suzuki, and M. Nakazawa, “Ultrafast Nyquist OTDM demultiplexing using optical Nyquist pulse sampling in an all-optical nonlinear switch,” Opt. Express, vol. 23, no. 16, pp. 20858-20866, August (2015).
  • [459] M. Yoshida, S. Beppu, K. Kasai, T. Hirooka, and M. Nakazawa, “1024 QAM, 7-core (60 Gbit/s x 7) fiber transmission over 55 km with an aggregate potential spectral efficiency of 109 bit/s/Hz,” Opt. Express, vol. 23, no. 16, pp. 20760-20766, August (2015).
  • [458] S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, "2048 QAM (66Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz," Opt. Express, vol. 23, no. 4, pp.4960-4969, February (2015).
  • [457] A. Fujisaki, S. Matsushita, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, "An 11.6 W output, 6 kHz linewidth, single-polarization EDFA-MOPA system with a 13C2H2 frequency stabilized fiber laser," Opt. Express, vol. 23, no. 2, pp. 1081-1087, January (2015).

2014

  • [456] Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “120 Gbit/s injection-locked homodyne coherent transmission of polarization-multiplexed 64 QAM signals over 150 km,” Opt. Express, vol. 22, no. 25, pp. 31310-31316, December (2014).
  • [455] M. Nakazawa, M. Yoshida, and T. Hirooka, “Measurement of mode coupling distribution along a few-mode fiber using a synchronous multi-channel OTDR,” Opt. Express, vol. 22, no. 25, pp. 31299-31309, December (2014).
  • [454] M. Nakazawa, “Evolution of EDFA from single-core to multi-core and related recent progress in optical communication,” Optical Review, vol. 21, no. 6, pp. 862-874, December (2014).
  • [453] K. Harako, D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa,“High-performance TDM demultiplexing of coherent Nyquist pulses using time-domain orthogonality,” Opt. Express, vol. 22, no. 24, pp. 29456-29464, December (2014).
  • [452] D. O. Otuya, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 1.92 Tbit/s, Pol-Mux-64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 7.5 bit/s/Hz,” Opt. Express, vol. 22, no. 20, pp. 23776-23785, October (2014).
  • [451] Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “60 Gbit/s, 64 QAM LD-based injection-locked coherent heterodyne transmission over 160 km with a spectral efficiency of 9 bit/s/Hz,” IEICE Electron. Express vol. 11, no. 17, 20140601, September (2014).
  • [450] T. Hirooka, M. Nakazawa, T. Komukai, and T. Sakano, “100 Gbit/s real-time digital coherent transmission over a 32 km legacy multi-mode graded-index fiber,” IEICE Electron. Express vol. 11, no. 15, 20140563, August (2014).
  • [449] T. Komukai, H. Kubota, T. Sakano, T. Hirooka, and M. Nakazawa, “Plug-and-play optical interconnection using digital coherent technology for resilient network based on movable and deployable ICT resource unit,” IEICE Trans. Comm. vol. E97-B, no. 7, pp. 1334-1341, July (2014).
  • [448] M. Nakazawa, M. Yoshida, and T. Hirooka, “The Nyquist laser,” Optica vol. 1, no. 1, pp. 15-22, July (2014).
  • [447] M. Nakazawa, “Exabit optical communication explored using 3M scheme,” Jpn. J. Appl. Phys. vol. 53, 08MA01 (2014).
  • [446] M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, "Adaptive 4~64 QAM real-time coherent optical transmission over 320 km with FPGA-based transmitter and receiver," Opt. Express vol. 22, no. 13, pp. 16520-16527, June (2014).
  • [445] M. Nakazawa, M. Yoshida, T. Hirooka, and K. Kasai, "QAM quantum stream cipher using digital coherent optical transmission," Opt. Express vol. 22, no. 4, pp. 4098-4107, February (2014).

2013

  • [444] T. Yajima, J. Yamamoto, F. Ishii, T. Hirooka, M. Yoshida, and M. Nakazawa, "Low-loss photonic crystal fiber fabricated by a slurry casting method," Opt. Express vol. 21, no. 25, pp. 30500-30506, December (2013).
  • [443] M. Yoshida, T. Hirooka, M. Nakazawa, K. Imamura, R. Sugizaki, and T. Yagi, "Detailed comparison between mode couplings along multi-core fibers and structural irregularities using a synchronous multi-channel OTDR system with a high dynamic range," Opt. Express vol. 21, no. 24, pp. 29157-29164, December (2013).
  • [442] K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, "A single-channel 1.28 Tbit/s-58 km transmission in the 1.1 μm band with wideband GVD and slope compensation," Opt. Express vol. 21, no. 23, pp. 29055-29064, November (2013).
  • [441] Y. Wang, K. Kasai, T. Omiya, and M. Nakazawa, “120 Gbit/s, polarization-multiplexed 10 Gsymbol/s, 64 QAM coherent transmission over 150 km using an optical voltage controlled oscillator,” Opt. Express, vol. 21, no. 23, pp. 28290-28296, November (2013).
  • [440] M. Nakazawa, “Disaster-resilient networks and optical communication technologies,” Journal of the Institute of Electronics, Information and Communication Engineers, vol. 96, no. 10, pp. 748-751, October (2013).
  • [439] D. O. Otuya, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, “A single-channel 1.92 Tbit/s, 64 QAM coherent optical pulse transmission over 150 km using frequency-domain equalization,” Opt. Express, vol. 21, no. 19, pp. 22808-22816, September (2013).
  • [438] K. Harako, D. Seya, T. Hirooka, and M. Nakazawa, “640 Gbaud(1.28 Tbit/s/ch) optical Nyquist pulse transmission over 525 km with substantial PMD tolerance,” Opt. Express, vol. 21, no. 18, pp.21063-21076, September (2013).
  • [437] T. Sakano, Z. M. Fadlullah, T. Kumagai, A. Takahara, T. Ngo, H.Nishiyama, H. Kasahara, S. Kurihara, M. Nakazawa, F. Adachi, and N.Kato, “Disaster resilient networking - a new vision based on movable and deployable resource units,” IEEE Network, vol. 27, no. 4, pp.40-46, July/August (2013).
  • [436] T. Hirooka, K. Harako, P. Guan, and M. Nakazawa, “Second-order PMD-induced crosstalk between polarization-multiplexed signals and its impact on ultrashort optical pulse transmission,” J. Lightwave Technol. vol. 31, no. 5, pp. 809-814, March (2013).
  • [435] K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, “160 Gbit/s-300 km single-channel transmission in the 1.1 μm band with a precise GVD and slope compensation,” Opt. Express, vol. 21, no. 4, pp. 4303-4310, February (2013).
  • [434] T. Omiya, M. Yoshida, and M. Nakazawa, “400 Gbit/s 256 QAM-OFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency by using high-resolution FDE,” Opt. Express vol. 21, no. 3, pp. 2632-2641, February (2013).

2012

  • [433] T. Ono, Y. Hori, M. Yoshida, T. Hirooka, M. Nakazawa, J. Mata, and J. Tsukamoto, “A 31 mW, 280 fs passively mode-locked fiber soliton laser using a high heat-resistant SWNT/P3HT saturable absorber coated with siloxane,” Opt. Express vol. 20, no. 21, pp. 23659-23665, October (2012).
  • [432] K. Tokuhira, F. Suzuki, M. Yoshida, and M. Nakazawa, “A Cesium optical atomic clock with high optical frequency stability,” IEICE Electron. Express, vol. 9, no. 18, pp. 1496-1503, September (2012).
  • [431] Y. Koizumi, K. Toyoda, T. Omiya, M. Yoshida, T. Hirooka, and M. Nakazawa, "512 QAM transmission over 240 km using frequency-domain equalization in a digital coherent receiver," Opt. Express vol. 20, no. 21, pp. 23383-23389, September (2012).
  • [430] T. Hirooka and M. Nakazawa, “Linear and nonlinear propagation of optical Nyquist pulses in fibers,” Opt. Express, vol. 20, no. 18, pp. 19836-19849, August (2012).
  • [429] K. Toyoda, Y. Koizumi, T. Omiya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Marked performance improvement of 256 QAM transmission using a digital back-propagation method,” Opt. Express, vol. 20, no. 18, pp. 19815-19821, August (2012).
  • [428] T. Hirooka, P. Ruan, P. Guan, and M. Nakazawa, “Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km,” Opt. Express, vol. 20, no. 14, pp. 15001-15008, July (2012).
  • [427] M. Nakazawa, M. Yoshida, and T. Hirooka, “Nondestructive measurement of mode couplings along a multi-core fiber using a synchronous multi-channel OTDR,” Opt. Express, vol. 20, no. 11, pp. 12530-12540, May (2012).
  • [426] Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express, vol. 20, no. 11, pp. 12508-12514, May (2012).
  • [425] M. Yoshida, T. Omiya, K. Kasai, and M. Nakazawa, "64 QAM real-time coherent transmission using FPGA-based receiver," IEICE Trans. Comm., vol. J95-B, no. 3, pp. 405-413, March (2012)
  • [424] K. Kasai, D. O. Otuya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-Carrier 800-Gb/s 32 RZ/QAM Coherent Transmission Over 225 km Employing a Novel RZ-CW Conversion Technique,” IEEE Photon. Technol. Lett., vol. 24, no. 5, pp. 416-418, March (2012).
  • [423] M. Nakazawa, T. Hirooka, M. Yoshida, and K. Kasai, “Ultrafast coherent optical communication,” IEEE J. Sel. Top. Quantum Electron., vol. 18, no. 1, pp. 363-376, Jan. (2012).
  • [422] M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, "Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train," Opt. Express vol. 20, no. 2. pp. 1129-1140, Jan. (2012).

2011

  • [421] M. Nakazawa, K. Kasai, M. Yoshida, and T. Hirooka, "Novel RZ-CW conversion scheme for ultra multi-level, high-speed coherent OTDM transmission," Opt. Express, vol. 19, no. 26, pp. B574-B580, Dec. (2011).
  • [420] P. Guan, T. Hirano, K. Harako, Y. Tomiyama, T. Hirooka, and M. Nakazawa, "2.56 Tbit/s/ch Polarization-Multiplexed DQPSK Transmission over 300 km Using Time-Domain Optical Fourier Transformation," Opt. Express, vol. 19, no. 26, pp. B567-B573, Dec. (2011).
  • [419] K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, "A 10 GHz 1.1 ps Regeneratively Mode-Locked Yb Fiber Laser in the 1.1 μm Band," Opt. Express, vol. 19, no. 25, pp. 25426-25432, Dec. (2011).
  • [418] Y. Tomiyama, K. Harako, P. Guan, T. Hirooka, and M. Nakazawa, "Comparison between polarization-multiplexed DPSK and single-polarization DQPSK in 640 Gbaud, 1.28 Tbit/s-500 km single-channel transmission," Opt. Fiber Technol., invited paper, vol. 17, no. 5, pp. 439-444, Oct. (2011).
  • [417] T. Hirooka, T. Hirano, P. Guan, and M. Nakazawa, "PMD-induced crosstalk in ultrahigh-speed polarization-multiplexed optical transmission in the presence of PDL," J. Lightwave Technol., vol. 29, no. 19, pp. 2963-2970, Oct. (2011).
  • [416] K. Fukuchi and M. Nakazawa, "Ultra high capacity optical fiber transmission technologies," IEEJ Journal, vol. 131, no. 9, pp. 611-613, September (2011).
  • [415] Y. Wang, K. Kasai, and M. Nakazawa, “Polarization-multiplexed, 10 Gsymbol/s, 64 QAM coherent transmission over 150 km with OPLL-based homodyne detection employing narrow linewidth LDs,” IEICE Electron. Express, vol. 8, no. 17, pp. 1444-1449, September (2011).
  • [414] K. Kasai, A. Mori, and M. Nakazawa,“1.5-μm Frequency-stabilized λ/4-shifted DFB LD employing an external fiber ring cavity with a linewidth of 2.6 kHz and an RIN of - 135 dB/Hz ,” IEEE Photon. Technol. Lett., vol. 23, no. 15, pp. 1046-1048, August (2011).
  • [413] E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A.Scavennec, F. A. Kish, D. F. Welch, R. Nagarajan, C. H. Joyner, R. P.Schneider Jr., S. W. Corzine, M. Kato, P. W. Evans, M. Ziari, A. G. Dentai,J. L. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D.J. Richardson, F.Poletti, M. N. Petrovich, S. U. Alam, W. H. Loh and D. N. Payne, “Science and technology challenges in XXIst century optical communications,” Comptes Rendus Physique, vol. 12, no. 4, pp. 387-416, May (2011).
  • [412] P. Guan, H. C. Hansen Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, “Single-channel 1.28 Tbit/s-525 km DQPSK transmission using ultrafast time-domain optical Fourier transformation and nonlinear optical loop mirror,” IEICE Trans. Comm., vol. E94-B, no. 2, pp. 430-436, February (2011).
  • [411] M. Yoshida, S. Okamoto, T. Omiya, K. Kasai, and M. Nakazawa, “256 QAM digital coherent optical transmission using Raman amplifiers,” IEICE Trans. Comm., vol. E94-B, no. 2, pp. 417-424, February (2011).
  • [410] D. Yang, S. Kumar, and M. Nakazawa, “Investigation and comparison of digital backward propagation schemes for OFDM and single-carrier fiber-optic transmission systems,” Opt. Fiber Technol., vol. 17, no. 1, pp. 84-90, January (2011).

2010

  • [409] P. Guan, H. C. Hansen Mulvad, K. Kasai, T. Hirooka, and M. Nakazawa, “High Time-Resolution 640-Gb/s Clock Recovery Using Time-Domain Optical Fourier Transformation and Narrowband Optical Filter,” IEEE Photon. Technol. Lett., vol. 22, no. 23, pp. 1735-1737, December (2010).
  • [408] T. Morisaki, M. Yoshida, and M. Nakazawa, “Optical frequency-tunable Cs atomic clock with a 9.19GHz mode-hop-free fiber laser,” IEICE Electron. Express, vol. 7, no. 21, pp. 1652-1658, November (2010).
  • [407] K. S. Abedin and M. Nakazawa, “Real time monitoring of a fiber fuse using an optical time-domain reflectometer,” Opt. Express, vol. 18, no. 20, pp. 21315-21321, Septermber (2010).
  • [406] T. Omiya, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa, “60 Gbit/s 64 QAM-OFDM coherent optical transmission with a 5.3 GHz bandwidth,” IEICE Electron. Express, vol. 7, no. 15, pp. 1163-1168, August (2010).
  • [405] T. Hirano, P. Guan, T. Hirooka, and M. Nakazawa, “640-Gb/s/channel single-polarization DPSK transmission over 525 km with ultrafast time-domain optical Fourier transformation,” IEEE Photon. Technol. Lett., vol. 22, no. 14, pp. 1042-1044, July (2010).
  • [404] M. Nakazawa, "Advances in information communication technology based on lasers," Journal of Applied Physics (Ouyou-Butsuri, in Japanese), vol. 79, no. 6, pp. 508-516, June (2010).
  • [403] F. Shohda, Y. Hori, M. Nakazawa, J. Mata, and J. Tsukamoto, “131 fs, 33 MHz all-fiber soliton laser at 1.07 μm with a film-type SWNT saturable absorber coated on polyimide,” Opt. Express, vol. 18, no. 11, pp. 11223-11229, May (2010).
  • [402] F. Shohda, M. Nakazawa, J. Mata, and J. Tsukamoto, “A 113 fs fiber laser operating at 1.56 μm using a cascadable film-type saturable absorber with P3HT-incorporated single-wall carbon nanotubes coated on polyamide,” Opt. Express, vol. 18, no. 9, pp. 9712-9721, April (2010).
  • [401] K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photon. Technol. Lett., vol. 22, no. 8, pp. 562-564, April (2010).
  • [400] M. Nakazawa, “Recent progress on ultrafast/ultrashort/frequency-stabilized erbium-doped fiber lasers and their applications,” Frontiers of Optoelectronics in China, vol. 3, no. 1, pp. 38-44, March (2010).
  • [399] K. Koizumi, M. Yoshida, and M. Nakazawa, “A 10-GHz optoelectronic oscillator at 1.1 μm using a single-mode VCSEL and a photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 22, no. 5, pp. 293-295, March (2010).
  • [398] M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett., vol. 22, no. 3, pp. 185-187, February (2010).

2009

  • [397] F. Shohda, M. Nakazawa, R. Akimoto, and H. Ishikawa, “An 88 fs fiber soliton laser using a quantum well saturable absorber with an ultrafast inersubband transition,” Opt. Express, vol. 17, no. 25, pp. 22499-22504, December 2009.
  • [396] K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, “10 Gbit/s photonic crystal fiber transmissions with 1.1 μm directly-modulated single-mode VCSEL,” IEICE Electron. Express, vol. 6, no. 22, pp. 1615-1620, November 2009.
  • [395] K. Koizumi, M. Yoshida, and M. Nakazawa, “10-GHz 11.5-ps pulse generation from a single-mode gain-switched InGaAs VCSEL at 1.1 μm,” IEEE Photon. Technol. Lett., vol. 21, no. 22, pp. 1704-1706, November 2009.
  • [394] P. Guan, M. Okazaki, T. Hirano, T. Hirooka, and M. Nakazawa, “Low-penalty 5x320 Gbit/s/single-channel WDM DPSK transmission over 525 km using time-domain optical Fourier transformation,” IEEE Photon. Technol. Lett., vol. 21, no. 21, pp. 1579-1581, November (2009).
  • [393] K. S. Abedin, T. Miyazaki, and M. Nakazawa, “Measurements of spectral broadening and Doppler shift of backreflections from a fiber fuse using heterodyne detection,” Opt. Lett., vol. 34, no. 20, pp. 3157-3159, October (2009).
  • [392] T. Hirooka, M. Okazaki, T. Hirano, P. Guan, M. Nakazawa, and S. Nakamura, “All-optical demultiplexing of 640-Gb/s OTDM-DPSK signal using a semiconductor SMZ switch,” IEEE Photon. Technol. Lett., vol. 21, no. 20, pp. 1574-1576, October (2009).
  • [391] M. Nakazawa, “20 years of EDFA and future prospects,” IEICE Trans. Electron. (in Japanese), vol. J92-C, no. 8, pp. 339-359, August (2009).
  • [390] K. Kasai and M. Nakazawa, “FM-eliminated C2H2 frequency-stabilized laser diode with an RIN of -135 dB/Hz and a linewidth of 4 kHz,” Opt. Lett., vol. 34, no. 14, pp. 2225-2227, July (2009).
  • [389] S. Masuda, S. Niki, and M. Nakazawa, "Environmentally stable, simple passively mode-locked fiber ring laser using a four-port circulator," Opt. Express, vol. 17, no. 8, pp. 6613-6622, April (2009).
  • [388] K. S. Abedin, M. Nakazawa, and T. Miyazaki, "Backreflected radiation due to a propagating fiber fuse," Opt. Express, vol. 17, no. 8, pp. 6525-6531, April (2009).
  • [387] M. Nakazawa, "Ultra-multilevel coherent QAM optical transmission technology," Review of Laser Engineering (in Japanese), vol. 37, no. 3, pp. 101-106, March (2009).

2008

  • [386] F. Shohda, T. Shirato, M. Nakazawa, K. Komatsu, and T. Kaino, "A passively mode-locked femtosecond soliton fiber laser at 1.5 μm with a CNT-doped polycarbonate saturable absorber," Opt. Express, vol. 16, no. 26, pp. 21191-21198, December (2008).
  • [385] M. Okazaki, P. Guan, T. Hirooka, M. Nakazawa, and T. Miyazaki, "160-Gb/s 200-km field transmission experiment with large PMD using a time-domain optical Fourier transformation technique," IEEE Photon. Technol. Lett., vol. 20, no. 24, pp. 2192-2194, December (2008).
  • [384] F. Shohda, T. Shirato, M. Nakazawa, J. Mata, and J. Tsukamoto, "147 fs, 51 MHz soliton fiber laser at 1.56 m with a fiber-connector-type SWNT/P3HT saturable absorber," Opt. Express, vol. 16, no. 25, pp. 20943-20948, December (2008).
  • [383] M. Nakazawa, K. Kasai, and M. Yoshida, "C2H2 absolutely optical frequency-stabilized and 40 GHz repetition-rate-stabilized, regeneratively mode-locked picosecond erbium fiber laser at 1.53 m," Opt. Lett., vol. 33, no. 22, pp. 2641-2643, November (2008).
  • [382] T. Hirooka, M. Okazaki, P. Guan, and M. Nakazawa, "320-Gb/s single-polarization DPSK transmission over 525 km using time-domain optical Fourier transformation," IEEE Photon. Technol. Lett., vol. 20, no. 22, pp. 1872-1874, November (2008).
  • [381] T. Hirooka and M. Nakazawa, "All-optical 40-GHz time-domain Fourier transformation using XPM with a dark parabolic pulse," IEEE Photon. Technol. Lett., vol. 20, no. 22, pp. 1869-1871, November (2008).
  • [380] T. Hirooka, K. Osawa, M. Okazaki, M. Nakazawa, and H. Murai, “Stimulated Brillouin scattering in ultrahigh-speed in-phase RZ and CS-RZ OTDM transmission,” IEEE Photon. Technol. Lett., vol. 20, no. 20, pp. 1694-1696, October (2008).
  • [379] Y. Nakajima, H. Inaba, F. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, "Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation," Opt. Comm., vol. 281, no. 17, pp. 4484-4487, September (2008).
  • [378] H. Goto, M. Yoshida, T. Omiya, K. Kasai, and M. Nakazawa, “Polarization and frequency division multiplexed 1Gsymbol/s, 64 QAM coherent optical transmission with 8.6bit/s/Hz spectral efficiency over 160km,” IEICE Electron. Express, vol. 5, no. 18, pp. 776-781, September (2008).
  • [377] H. T. Quynhanh, A. Suzuki, M. Yoshida, T. Hirooka, and M. Nakazawa, “A λ/4-shifted distributed-feedback laser diode with a fiber ring cavity configuration having an OSNR of 85 dB and a linewidth of 7 kHz,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1578-1580, September (2008).
  • [376] T. Hirooka, M. Okazaki, and M. Nakazawa, “A straight-line 160-Gb/s DPSK transmission over 1000 km with time-domain optical Fourier transformation,” IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 1094-1096, July (2008).
  • [375] T. Hirooka, M. Nakazawa, and K. Okamoto, “Bright and dark 40 GHz parabolic pulse generation using a picosecond optical pulse train and an arrayed waveguide grating ,” Opt. Lett., vol. 33, no. 10, pp. 1102-1104, May (2008).
  • [374] M. Nakazawa and M. Yoshida, “Scheme for independently stabilizing the repetition rate and optical frequency of a laser using a regenerative mode-locking technique,” Opt. Lett., vol. 33. no. 10, pp. 1059-1061, May (2008).
  • [373] M. Yoshida, H. Goto, K. Kasai, and M. Nakazawa, “64 and 128 coherent QAM optical transmission over 150 km using frequency-stabilized laser and heterodyne PLL detection,” Opt. Express, vol. 16, no. 2, pp. 829-840, January (2008).
  • [372] K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, “The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission,” IEICE Electron. Express, vol. 5, no. 1, pp. 6-10, January (2008).

2007

  • [371] M. Yoshida, A. Ono, and M. Nakazawa, "10 GHz regeneratively mode-locked semiconductor optical amplifier fiber ring laser and its linewidth characteristics," Opt. Lett., vol. 32, no. 24, pp. 3513-3515, December (2007).
  • [370] T. Hirayama, M. Yakabe, M. Yoshida, M. Nakazawa, Y. Koga, and K. Hagimoto, “An ultrastable Cs optical atomic clock with a 9.1926-GHz regeneratively mode-locked fiber laser,” IEICE Trans. Electron. (in Japanese), vol. J90-C, no. 12, pp. 977-987, December (2007).
  • [369] M. Nakazawa, T. Hirooka, and M. Yoshida, “Optical fiber transmission of standard signals using optical combs,” The Review of Laser Engineering (in Japanese), vol. 35, no. 10, pp. 649-653, October (2007).
  • [368] A. Suzuki, Y. Takahashi, M. Yoshida, and M. Nakazawa, “An ultralow noise and narrow linewidth λ/4-shifted DFB Er-doped fiber laser with a ring cavity configuration,” IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1463-1465, October (2007).
  • [367] H. Hasegawa, Y. Oikawa, and M. Nakazawa, “A 10-GHz optoelectronic oscillator at 850 nm using a single-mode VCSEL and a photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1451-1453, October (2007).
  • [366] M. Nakazawa, H. Hasegawa, and Y. Oikawa, “10-GHz 8.7-ps pulse generation from a single-mode gain-switched AlGaAs VCSEL at 850 nm,” IEEE Photon. Technol. Lett,, vol. 19, no. 16, pp. 1251-1253, August (2007).
  • [365] M. Yoshida, K. Kasai, and M. Nakazawa, “Mode-hop-free, optical frequency tunable 40 GHz mode-locked fiber laser,” IEEE J. Quantum Electron., vol. 43, no. 8, pp. 704-708, August (2007).
  • [364] M. Yoshida, T. Hirayama, M. Nakazawa, K. Hagimoto, and T. Ikegami, “Regeneratively mode-locked fiber laser with a repetition rate stability of 4.9×10-15 using a hydrogen maser phase-locked loop,” vol. 32, no. 13, pp. 1827-1829, July (2007).
  • [363] H. Hasegawa, Y. Oikawa, T. Hirooka, and M. Nakazawa, “40 Gbit/s-2 km photonic crystal fiber transmission with 850 nm singlemode VCSEL,” Electron. Lett., vol. 43, no. 11, pp. 642-644, May (2007).
  • [362] T. Hirayama, M. Yoshida, M. Nakazawa, K. Hagimoto, and T. Ikegami, “Mode-locked laser-type optical atomic clock with an optically pumped Cs gas cell,” Opt. Lett., vol. 32, no. 10, pp. 1241-1243, May (2007).
  • [361] J. Hongo, K. Kasai, M. Yoshida, and M. Nakazawa, “1-Gsymbol/s 64-QAM coherent optical transmission over 150 km,” IEEE Photon. Technol. Lett., vol. 19, no. 9, pp. 638-640, May (2007).
  • [360] A. Suzuki, Y. Takahashi, M.Yoshida, and M. Nakazawa, “A CW polarization-maintaining λ/4 shifted DFB Er-doped fiber laser at 1.54 μm,” IEICE Electron. Express, vol. 4, no. 8, pp. 251-257, April (2007).
  • [359] Y. Oikawa, H. Hasegawa, K. Suzuki, Y. Inoue, T. Hirooka, and M. Nakazawa, “4x10 Gb/s WDM transmission over a 5-km-long photonic crystal fiber in the 800-nm region,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 613-615, April (2007).
  • [358] K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express, vol. 4, no. 3, pp. 77-81, February (2007).
  • [357] M. Nakazawa, M. Yoshida, and T. Hirooka, “Ultra-stable regeneratively mode-locked laser as an opto-electronic microwave oscillator and its application to optical metrology,” IEICE Trans. Electron., Invited paper, vol. E90-C, no. 2, pp. 443-449, February (2007).
  • [356] H. Hasegawa, Y. Oikawa, and M. Nakazawa, “10 Gbit/s 2 km photonic crystal fiber transmission with 850 nm directly modulated singlemode VCSEL,” Electron. Lett., vol. 43, no. 2, pp. 117-119, January (2007).

2006

  • [355] T. Hirooka, K. Hagiuda, T. Kumakura, K. Osawa, and M. Nakazawa, “160 Gb/s-600 km OTDM transmission using time-domain optical Fourier transformation,” IEEE Photon. Technol. Lett., vol. 18, no. 24, pp. 2647-2649, December (2006).
  • [354] A. Suzuki, Y. Takahashi, and M. Nakazawa, “A polarization-maintained, ultranarrow FBG filter with a linewidth of 1.3 GHz,” IEICE Electron. Express, vol. 3, no. 22, pp. 469-473, November (2006).
  • [353] K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express, vol.3, no. 22, pp. 487-492, November (2006).
  • [352] M. Nakazawa and T. Hirooka, "Recent progress and future prospects for high-speed optical transmission technology using an ultrashort optical pulse train," Invited paper, IEICE Trans. Comm.(in Japanese), vol. J89-B, no. 11, pp. 2067-2081, November (2006).
  • [351] T. Hirooka, T. Kumakura, K. Osawa, and M. Nakazawa, “Comparison of 40 GHz optical demultiplexers using SMZ switch and EA modulator in 160 Gbit/s-500 km OTDM transmission,” IEICE Electronics Express, vol. 3, no. 17, pp. 397-403, September (2006).
  • [350] Y. Oikawa, H. Hasegawa, T. Hirooka, M.Yoshida, and M. Nakazawa, "Ultra-broadband dispersion measurement of photonic crystal fiber with pico-second streak camera and group-delay-frees supercontinuum," IEICE Trans. Electron. (in Japanese), vol. J89-C, no. 7, pp. 450-457, July (2006).
  • [349] T. Hirooka and M. Nakazawa, “Optical adaptive equalization of high-speed signals using time-domain optical Fourier transformation,” Invited paper, J. Lightwave Technol., vol. 24, no. 7, pp. 2530-2540, July (2006).
  • [348] H. Inaba, Y. Daimon, F. -L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express, vol. 14, no. 12, pp. 5223-5231, June (2006).
  • [347] M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilised laser,” Electron. Lett., vol. 42, no. 12, pp. 710-712, June (2006).
  • [346] M. Nakazawa, S. Nakahara, T. Hirooka, M. Yoshida, T. Kaino, and K. Komatsu, “Polymer saturable absorber materials in the 1.5 μm band using poly-methyl-methacrylate and polystyrene with single-wall carbon nanotubes and their application to a femtosecond laser,” Opt. Lett., vol. 31, no. 7, pp. 915-917, April (2006).
  • [345] H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, “10 Gb/s transmission over 5 km at 850 nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD,” IEICE Electron. Express, vol. 3, no.6, pp. 109-114, March (2006).
  • [344] M. Nakazawa and T. Hirooka, “ABCD matrix formalism of time-domain optical Fourier transformation for distortion-free pulse transmission,” IEICE Electron. Express, vol. 3, no. 4, pp. 74-79, February (2006).

2005

  • [343] H. Hasegawa, M. Kikegawa, M. Yoshida, T. Hirooka, and M. Nakazawa, "Observation of optimum air-hole tapering of splicing between a conventional fiber and a photonic crystal fiber and analysis of reduction of Fresnel reflection," IEICE Trans. Electron., vol. J88-C, no. 10, pp. 779-787, October (2005).
  • [342] K. Kasai, M. Yoshida, and M. Nakazawa, "Acetylene (13C2H2) stabilized single-polarization fiber laser," IEICE Trans. Electron., vol. J88-C, no. 9, pp. 708-715, September (2005).
  • [341] M. Yakabe, K. Nito, M. Yoshida, and M. Nakazawa, "Microwave frequency tuning characteristics of an opto-microwave oscillator made of fiber laser and its application to Ramsey fringe observation of Cs atoms," IEICE Trans. Comm., vol. J88-B, no. 9, pp. 1829-1836, September (2005).
  • [340] M. Nakazawa and T. Hirooka, “Distortion-free optical transmission using time-domain optical Fourier transformation and transform-limited optical pulses,” J. Opt. Soc. Am. B, vol. 22, no. 9, pp. 1842-1855, September (2005).
  • [339] T. Hirooka, M. Nakazawa, F. Futami, and S. Watanabe,“Ultrahigh-speed distortion-free optical pulse transmission using time-domain optical Fourier transformation,”IEICE Trans. Comm. (in Japanese), vol. J88-B, no. 8, pp. 1402-1410, August (2005).
  • [338] H. Hasegawa, T. Hirooka, and M. Nakazawa, “A new method for optimum dispersion designing of zero-dispersion and dispersion-flattened photonic crystal fibers,”IEICE Trans. Electron. (in Japanese), vol. J88-C, no. 7, pp. 519-527, July (2005).
  • [337] M. Yakabe, K. Nito, M. Yoshida, M. Nakazawa, Y. Koga, K. Hagimoto, and T. Ikegami, “Ultrastable cesium atomic clock with a 9.1926-GHz regeneratively mode-locked fiber laser,” Opt. Lett., vol. 30, no. 12, pp. 1512-1514, June (2005).
  • [336] K. Haneda, M. Yoshida, M. Nakazawa, H. Yokoyama, and Y. Ogawa, “Linewidth and relative intensity noise measurements of longitudinal modes in ultrahigh-speed mode-locked laser diodes,” Opt. Lett., vol. 30, no. 9, pp. 1000-1002, May (2005).
  • [335] K. Hagiuda, T. Hirooka, M. Nakazawa, S. Arahira, and Y. Ogawa, “40-GHz, 100-fs stimulated-Br/p>llouin-scattering-free pulse generation by combining a mode-locked laser diode and a dispersion-decreasing fiber,” Opt. Lett., vol. 30, no. 6, pp. 670-672, March (2005).
  • [334] K. Haneda, M. Yoshida, H. Yokoyama, Y. Ogawa, and M. Nakazawa, "Measurements of longitudinal linewidth and relative intensity noise in ultrahigh-speed mode-locked semiconductor lasers, " IEICE Trans. Electron., vol. J88-C, no. 3, pp. 161-168, March (2005).
  • [333] T. Hirooka, S. Ono, K. Hagiuda, and M. Nakazawa, “Stimulated Brillouin scattering in dispersion-decreasing fiber with ultrahigh-speed femtosecond soliton pulse compression,” Opt. Lett., vol. 30, no. 4, pp. 364-366, Feb. (2005).
  • [332] M. Nakazawa and T. Hirooka, “Distortion-free transmission of ultrashort optical pulses using time-domain optical Fourier transformation,” Japanese Journal of Optics (in Japanese), vol. 34, no. 1, pp. 26-31, January (2005).

2004

  • [326] T. Hirooka and M. Nakazawa, "Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion, " Opt. Lett., vol. 29, no. 5, pp. 498-500, March (2004).
  • [327] M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, "Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses, " IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1059-1061, April (2004).
  • [328] T. Hirooka, Y. Hori, and M. Nakazawa, "Gaussian and sech approximations of mode field profiles in photonic crystal fibers, " IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1071-1073, April (2004).
  • [329] M. Yoshida, T. Yaguchi, S. Harada, and M. Nakazawa, "A 40 GHz regeneratively and harmonically mode-locked erbium-doped fiber laser and its longitudinal-mode characteristics, " IEICE Trans. Electron., vol. E87-C, no. 7, pp. 1166-1172, July (2004).
  • [330] T. Hirooka, M. Nakazawa, F. Futami, and S. Watanabe, "A new adaptive equalization scheme for 160 Gbit/s transmitted signals using time-domain optical Fourier transformation, " IEEE Photon. Technol. Lett., vol. 16, no. 10, pp. 2371-2373, October (2004).
  • [331] M. Nakazawa, " Photonic crystal fibers and their applications, " Japanese Journal of Applied Physics (Ouyou-Butsuri, in Japanese), vol. 73, no. 11, pp. 1409-1417, November (2004).

2003以前

トップへ戻るボタン